
Smoothness prior information in principalcomponent analysis of dynamic image dataV�aclav �Sm��dl1, Miroslav K�arn�y1, Martin �S�amal2, Werner Backfrieder3,Zsolt Szabo41 Institute of Information Theory and Automation, Academy of Sciences ofthe Czech Republic, POB 18, CZ-182 08 Prague 8, Czech Republicsmidl@utia.cas.cz, school@utia.cas.cz2 Charles University Prague, Czech Republicsamal@cesnet.cz3 Institute of Biomedical Engineering and Physics, AKH Vienna, Austriawerner@bmtp.akh-wien.ac.at4 Johns Hopkins University, Baltimore, MD, USAzszabo@welchlink.welch.jhu.eduAbstract. Principal component analysis is a well developed and under-stood method of multivariate data processing. Its optimal performancerequires knowledge of noise covariance that is not available in most ap-plications. We suggest a method for estimation of noise covariance basedon assumed smoothness of the estimated dynamics.1 IntroductionIn medical image processing, principal component analysis (PCA) is used fordata compression, noise reduction, and feature extraction purposes. Its usefulnessand many advantages are well known. Performance of PCA depends on theamount and characteristics of noise in observed data. In data with a low signal-to-noise ratio (SNR), inhomogeneous, or correlated noise, the performance ofPCA can be poor.The problem has been addressed theoretically in several papers [1{5] withrespect to the properties of noise and an optimal scaling of data for PCA wasde�ned. The authors concluded that the optimal metric can be derived directlyfrom the known covariance matrix of the noise, and suggested particular solutionsfor speci�c data. With simulated data and known noise, we have found [6] thatthe methods proposed in [3, 4, 7] are e�cient but their applicability restrictedby requirements (e.g. knowledge of the distribution or the covariance matrix ofthe noise) that are not easily satis�ed in practice. That was the motivation forsearching for a more practical approach.We suggest that the covariance matrix of the noise and thus the optimalmetric for PCA can be estimated using a rather general prior information onthe assumed smoothness of dynamic processes recorded in image sequences. Thisprior was originally developed for PCA of dynamic scintigraphic data where theassumption on smoothness of time-activity curves and of scintillation spectra is



2 V. �Sm��dl et al.fully substantiated. However, the same prior information can be applied to awider class of image sequences.The prior information is embraced via the Bayesian paradigm [8] and aniterative search for maximum a posteriori probability (MAP) estimation of theparameters is proposed. The performance of the method is demonstrated in thecontext of simulated and clinical dynamic image data.2 Problem description and solutionThe aim is to improve the performance of PCA when the data SNR is low and/orthe noise covariance is unknown. This requires a joint estimation of low-rankmean value of data and the covariance matrix of the noise.Model of observed data. The observed image sequence consists of T imageshaving N pixels each, stored column-wise. The images are assumed to be linearcombinations of r � min(N;T ) underlying images, P (N � r), weighted bycoe�cients,Q (r�T ). The observed data O consist of this combination corruptedby an additive zero mean noise EO = �+E = PQ+E:The noise is assumed to contain no outlying realizations so that its distributioncan be considered normal. Properties of the noise are thus fully characterizedby the covariance C = E(EitEj� ) where E denotes mathematical expectation. Itsgeneric entries describe correlations and variances of the noise at pixels i and j(i; j = 1 : : :N) at images t and � (t; � = 1 : : : T ). Hence, the observed data Oare normal with mean � and covariance C, symbolically O � N (�; C).Models of noise covariance. The array C is huge with 0:5(NT+1)NT distinctelements. It is much larger than the number NT of data O and thus a restrictedcovariance structure has to be considered. Usually, independence of noise entriesin di�erent pixels and images is assumed, all with the same variance 1=! > 0.Then, the model of data O becomesO � N (�; IN 
 IT!�1) = � !2��NT=2 exp��0:5!tr �(O � �) (O � �)0�	 ; (1)where 0 denotes transposition and tr trace. The covariance is C = (IN 
 IT )!�1where IN is the identity matrix and 
 is Kronecker product [9]. The use of theprecision ! instead of the variance simpli�es formal manipulations.The maximum likelihood estimate of � of rank r minimizes the quadraticform in the exponent of (1) and thus coincides with the PCA estimate [10]. Theresults are poor when the covariance C does not have the assumed structureand/or the noise level 1=! is too high compared to the signal values �. A solu-tion to this problem depends on a more realistic modelling of the noise. Here,



Smoothness prior information in PCA 3the direct extension C = IN 

�1 of the classical assumption is considered. Theprecision matrix 
 models changing covariances of the noise between the indi-vidual images. Formally, it is possible to consider C = ~
�1

�1 with arbitrarypositive de�nite N�N matrix ~
. Computational demands are then much higherbecause the number of pixels N is much larger than the number of images T .Prior information. We search for a joint estimator of �; 
. It is a non-trivialtask as it can be shown that the joint maximum likelihood estimate of � and 
does not exist. Thus, it is impossible to separate signal and noise spaces withoutadditional information.In nuclear medicine, image sequences reect the changes of pixel values withtime or energy. In the former case, the weights Q of images P can be interpretedas time-activity curves, in the latter case as scintillation spectra. In the followingtext we will use the time interpretation. The weights Q of images P are usuallysimilar so that the observed adjacent images are similar, too. The adjacent ob-served images are usually similar so that we expect the weights Q of underlyingimages to be similar. This qualitative information is quanti�ed as follows. Thevalues Qk(t) of k-th curve k = 1; : : : ; r at time t = 2; : : : ; T are related to thepreceding values through the simple time-dependent auto-regressionQk(t) � N (at�1Qk(t�1); ��1); (2)where the precision � and the coe�cients a = [a1 : : : aT�1], approximating thecurve evolution, are assumed to be common to all curves. The arbitrariness of theinitial values Qk(1) is modelled by the at normal probability density function(p.d.f.) Qk(1) � N (0; 1=") with a small precision ".These assumptions, applied to � = PQ with orthonormal images P , translateinto the prior p.d.f. for �. Its support has to be restricted to � of the assumedrank r � min(N;T ), i.e. to the space of lower dimension. This restriction of theparameter space to a lower dimension modi�es the normalization factor [9].� � K"0:5r�0:5Trexp f�0:5�tr (���0�0)g ; (3)where K is a normalizing constant independent of estimated parameters, � isthe (T � T ) matrix with the non-zero entries �1;1 = "0:5; �t;t = 1; �t�1;t =�at�1; t = 2; : : : ; T and zero entries otherwise.The speci�cation of the prior p.d.f. is completed by assuming mutually in-dependent at � N (1; 1=�), and 
 � W (N; wIT ) where W is the Wishartdistribution with parameters  and ! [9]. These priors assign the highest beliefto slowly changing dynamics and diagonal covariance but both are very at.Estimation algorithm. The observation and noise models, together with thechosen prior distribution on unknown parameters� = (�;
; a1; : : : ; aT�1; �; ") =(�; �) determine the posterior p.d.f. of parameters given by the observations O.Its �-dependent part readsL(�) = j
j0:5N(1+) �0:5Tr"0:5r � exp��0:5tr �(O � �)
 (O � �)0�	�� exp f�0:5�tr (���0�0) + w tr(
) + �(a+ 1)(a+ 1)0g : (4)



4 V. �Sm��dl et al.The MAP estimate of � maximizes the function (4). Maximization complexitystems mainly from the restricted rank of the mean value �. This makes an itera-tive search inevitable. Splitting of the estimated parameter � = [�; �] simpli�esthe description of the proposed algorithm.Algorithm SPCA: smoothed PCA1. Choose small values of tuning knobs �, , w, select the upper bound �n > 0on the number of iterations and set the iteration counter n = 0.2. Choose initial estimates �n of � as follows 
n = IT ; �n = "n = ant = 0; t =1; : : : ; T � 1.3. Do while �n; �n are changing and n < �n(a) Complete the squares in exponent (4) with respect to � so that you gettr [(OAn � �Bn)(OAn � �Bn)0] + �n,where An = 
n �H�1n �0 ; Bn = H�1n are regular matrices determined bythe latest estimates �n through the identity HnH 0n = 
n + �n�0n�n.The unique matrix remainder �n collects the terms independent of �.(b) Find the estimate (�Bn)n of (�Bn) by applying standard PCA to thescaled data (OAn ) and compute the estimate �n = (�Bn)nBn�1 of �.(c) Substitute �n into (4), �nd �n+1 as the maximizer of the obtained ex-pression (it can be mostly done analytically) and increase the iterationcounter n.3 ExperimentsSPCA was implemented in Matlab [11] and its performance evaluated in experi-ments with simulated and clinical data of dynamic scintigraphy. Two illustrativeexamples are presented: a simple mathematical phantom and a dynamic PETstudy of the brain with 11C labelled radioligand to serotonin transporters [12].
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Fig. 1. Factor images and curves used for simulation of dynamic scintigraphic data.The mathematical phantom consisted of 60 images of size 64 � 64. Eachimage was a linear combination of three factor images with circular structures.They are shown in Figure 1 which includes also the curves simulating intensitychanges with time. A at background and uncorrelated Gaussian noise (1) witha high variance was added to the simulated images. Figure 2 demonstrates six
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5 15 25 35 45 55Fig. 2. Six samples from the analyzed series of 60 noisy images.of 60 images (no. 5, 15, 25, 35, 45, and 55) in the resulting image series. PCAof the simulated data should recognize three underlying dynamic components.The �rst three most signi�cant principal components (PCs) produced by PCAare demonstrated in Figure 3, those produced by SPCA in Figure 4.

53.9 %

PC1 image

time

w
ei

gh
t

PC1 curve

2.52 %

PC2 image

time

w
ei

gh
t

PC2 curve

1.02 %

PC3 image

time

w
ei

gh
t

PC3 curve

Fig. 3. The �rst three most signi�cant PCs produced by PCA of simulated data. Num-bers in % are relative contributions of PCs to original data. In noiseless data, true con-tributions of the �rst three PCs are 95.0, 4.5, and 0.5 %. The curves show the weightsof respective PCs in original images. Thick lines show true weights of PCs extractedfrom noiseless data.
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Fig. 4. The �rst three most signi�cant PCs produced by SPCA of simulated data. Thethird PC is well de�ned and the curve reects well the corresponding dynamics (polarityof PCs is arbitrary). Unlike PCs in Figure 3, PCs in Figure 4 can be successfuly rotatedin order to recover the images and curves of underlying dynamic structures shown inFigure 1.A dynamic PET study of the brain with 11C labelled radioligand to serotonintransporter sites consisted of 18 images recorded in progressively extended timeintervals in order to compensate for a very fast decay of 11C and to obtain anacceptable contrast between the speci�c and non-speci�c binding of the radioli-gand that increases with time. Figure 5 demonstrates six of 18 images in therecorded image series. PCA was expected to recognize two underlying dynamiccomponents (the signal of speci�c and non-speci�c binding). The �rst two most
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t = 0.6 min t = 2.5 min t = 7 min t = 17.5 min t = 40 min t = 85 minFig. 5. Six samples from the analyzed series of 18 dynamic PET images.signi�cant PCs produced by PCA are demonstrated in Figure 6, those producedby SPCA in Figure 7.
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Fig. 6. The �rst two most signi�cant PCs produced by PCA of dynamic PET brainstudy. Only the �rst PC shows the brain structure, the second PC reects mostly noise.
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Fig. 7. The �rst two most signi�cant PCs produced by SPCA of the dynamic PETbrain study. The second PC is weak but well di�erentiated from noise. Unlike the PCsin Figure 6, the �rst two PCs in Figure 7 can be successfully rotated to the realisticimages and curves of underlying speci�c and non-speci�c binding maps.4 Discussion and conclusionsPreliminary experiments with simulated and clinical data have shown that incomparison with PCA, the SPCA is able to improve the separation of the signalfrom noise, and to enhance contrast in the images of principal components.We believe that the method proposed in this paper may improve the results ofPCA applied to dynamic scintigraphic data recorded with varying acquisitionintervals, in several energy windows, and studies with short-lived radionuclides.All those data are occasionally corrupted by potentially strong, correlated, andvariable noise that may result in suboptimal performance of PCA. The priorinformation used in the proposed method is rather general and not necessarilyrestricted to scintigraphic data. In addition, alternative prior information - better
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